Method Overview — Nonlinear Neo-Hookean, Axisymmetric Finite Elements

Problem

Bonded compression of an axisymmetric rubber part (cylinder / cone / curved cone). Bottom face bonded and fixed; top face bonded and driven downward by a prescribed displacement. The analysis computes deformed shape, shear distribution, reaction load, and effective stiffness.

Material model (compressible neo-Hookean)

Shear modulus: $\mu = G$

Bulk modulus: $\kappa = K_bulk (\kappa \gg \mu \text{ to suppress volumetric strain})$

Strain energy: W = $(\mu/2)\cdot(I_1 - 3 - 2\cdot\ln J) + (\kappa/2)\cdot(\ln J)^2$ Nominal stress (PK1): P = $\mu\cdot(F - F^{-T}) + \kappa\cdot\ln(J)\cdot F^{-T}$

Kinematics & axisymmetry

- Mesh is built in the meridional (r-z) plane using 4-node bilinear quads; DOFs per node: (u_r, u_z) .
- Deformation gradient F is evaluated at Gauss points; circumferential stretch $\lambda_{-}\theta = r/R$ enters $J = \det(F) \cdot \lambda_{-}\theta$.
- All element integrals include the axisymmetric weight $2\pi \cdot r$.

Weak form & discretization

From virtual work, assemble the internal residual:

 $R(u) = \int B^{T} \cdot P(F(u)) \cdot (2\pi r) dV$

where B maps nodal DOFs to gradients in (R,Z, θ). A stabilized secant-type tangent $K_t \approx \int B^T \cdot D_s ec \cdot B \cdot (2\pi r) dV$

is used to accelerate convergence while keeping the formulation robust for browser execution.

The diagonal entries of D_sec scale with (μ, κ) .

Boundary conditions

- Bottom (z=0): bonded \rightarrow u_r=0, u_z=0.
- Top (z=H): bonded, imposed displacement $\rightarrow u_r=0$, $u_z=-\Delta$.
- Axis (r=0): handled naturally by axisymmetric formulation.

Solution strategy

- Load stepping: increase prescribed compression to the target percentage of height.
- Newton iterations: solve $K_t \cdot \Delta u = -R$ until residual norm is small.
- Linear solver: preconditioned conjugate gradient (diagonal preconditioner).

Outputs

- Reaction force on the top plate; effective stiffness $k = F/\delta$.
- Deformed outline and a color map of shear γ_rz .
- Load-deflection curve from converged steps.

Notes on near-incompressibility

A large κ (bulk modulus) enforces small volumetric strain (J \approx 1). This prevents volume locking while allowing realistic bulging under bonded compression.

References

Bonet, J., & Wood, R. D. Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd ed. Bower, A. F. Applied Mechanics of Solids.

Ogden, R. W. Non-Linear Elastic Deformations.