State-of-Cure Method Used

Thermal Field (Axisymmetric FEM)

- Four-node bilinear axisymmetric elements with 2×2 Gauss integration.
- Assembles the transient conduction system

$$\mathbf{C} \cdot \dot{\mathbf{T}} + \mathbf{K} \cdot \mathbf{T} = \mathbf{Q}$$

where ${\bf C}$ is the heat-capacity matrix (ρ c_p N^TN), ${\bf K}$ is the conductivity matrix ($k \nabla N \cdot \nabla N$), and ${\bf Q}$ is the internal heat generation from cure.

• **Time stepping:** backward-Euler implicit:

$$(C/\Delta t + K) T^{n+1} = (C/\Delta t) T^n + Q^{n+1}$$
.

- \bullet **Boundary conditions:** Dirichlet (fixed temperature) at all outer nodes or OD-only at T_m old, as selected.
- Axisymmetric weighting includes the 2 π r term in each element integral.

Cure Kinetics (Autocatalytic / Kamal-Sourour Form)

Degree of cure $\alpha \in [0, 1]$ evolves as

$$d\alpha/dt = (\mathbf{k_1} + \mathbf{k_2} \alpha^{\mathbf{p}}) (1 - \alpha)^{\mathbf{p}}$$

with Arrhenius temperature dependence

$$\mathbf{k_i} = \mathbf{A_i} \exp(-\mathbf{E_i} / \mathbf{R} \mathbf{T})$$
 for $i = 1, 2$.

The rate is computed at every node from the current temperature field.

Thermo-Chemical Coupling (Exotherm)

Internal heat generation per unit volume:

$$\dot{q} = \rho H_r (d\alpha/dt)$$

This term enters the right-hand side Q of the conduction equation each time step.

Stability and Step Control

A per-step limit $\Delta\alpha_{max}$ ensures no node advances more than this fraction per time step, keeping the coupled system stable under strong exotherm.

Outputs and Tracking

- Snapshots of temperature (T) and degree of cure (α) are stored at 0%, 10%, 20%, ... 90% minimum cure and at completion.
- Each step reports:
 - Minimum α
 - -% of nodes with $\alpha \ge 0.90$
 - Maximum temperature
 - A color-mapped r-z plot (blue → red) of α.

Why This Approach Works Well

- The Kamal–Sourour model is standard for thermosets and rubbers: compact, fits DSC data, and captures both autocatalysis and diffusion-limited slowdown.
- Implicit heat stepping with Dirichlet BCs is unconditionally stable.
- The $\Delta\alpha_{max}$ limit provides simple adaptive damping against runaway.

Key References

- 1. **Kamal, M. R. & Sourour, S. (1973)**. *Kinetics and thermal characterization of thermoset cure.* Polymer Engineering & Science.
- 2. **Bogetti, T. A. & Gillespie, J. W. (1992)**. *Two-dimensional cure simulation of thick thermosetting composites.* Journal of Composite Materials.

- 3. **Advani, S. G. & Sozer, E. M. (eds.) (2010/2011)**. Process Modeling in Composites Manufacturing. CRC Press.
- 4. **Incropera et al.** Fundamentals of Heat and Mass Transfer. Wiley.