
Vehicle Dynamics Simulation Module: Documentation

Date: December 27, 2025 Version: 1.0

1. Overview

This module is a browser-based, 3D simulation designed to analyze the vertical dynamic

response of a 4-wheeled, suspended vehicle. It allows users to visualize and quantify how a

vehicle’s suspension system reacts to various road irregularities (speed bumps, potholes, and

rough terrain) in real time.

The simulation combines a high-fidelity physics engine (RK4 integrator) with 3D visualization

(Three.js) and real-time data plotting (Chart.js) to provide immediate engineering feedback.

2. User Guide

2.1 Vehicle Geometry & Configuration

The Control Panel (Left Sidebar) allows users to define the physical properties of the vehicle.

Updates occur in real time.

• Chassis (Box 1): Defines the main body dimensions and weight.

• Cab/Cargo (Box 2): Defines a secondary mass (e.g., truck cab or payload). The module

automatically recalculates the Center of Gravity (CG) and Mass Moment of Inertia

(𝐼𝑥𝑥, 𝐼𝑦𝑦)based on the combined masses.

• The untethered box: This box floats on the Chassis box upper surface and is free to

move and even fall off and bounce on the ground.

Suspension:

• Stiffness (𝑘): Spring rate (lb/in). Higher values → stiffer ride.

• Damping (𝑐): Shock absorber resistance (lb·s/in). Controls oscillation decay.

Tires: Modeled as vertical stiff springs. Users can define tire stiffness (𝑘𝑡)and diameter.

2.2 Simulation Controls

• Solve: Starts the physics integration loop. The vehicle begins moving forward at the

specified velocity.

• Stop: Pauses the physics engine but keeps the 3D scene active.

• Reset / Center Vehicle: Returns the vehicle to the starting position and resets time to

zero.

• Speed: Defines the constant forward velocity (𝑉𝑥)in inches/second.

2.3 Road Features

Users can construct a custom test track by adding features at specific distances:

• Full Speed Bump: Sine-wave bump spanning full road width.

• 1/2 Bump (Left/Right): Asymmetrical bump affecting one side; useful for roll dynamics
(𝐼𝑥𝑥).

• Rough Dirt Road: Generated terrain using multi-frequency deterministic noise.

2.4 Data Analysis

A real-time graph at the bottom of the screen plots vertical acceleration (G-Force) for:

• CG: Center of Gravity

• FL / FR / RL / RR: Four chassis corners (suspension hardpoints)

• User Point: Custom location defined by coordinates (𝑋, 𝑌)
• Untethered box CG

3. Solution Techniques & Physics Model

3.1 Coordinate System

The simulation uses a standard vehicle dynamics coordinate system (Z-Up):

• X: Lateral (Left/Right)

• Y: Longitudinal (Forward/Backward)

• Z: Vertical (Up/Down)

• Origin: Ground plane (𝑍 = 0)

3.2 Dynamics Solver: Runge-Kutta 4 (RK4)

To ensure stability with stiff suspension springs, the module uses a 4th-Order Runge-Kutta

(RK4) integration scheme. Unlike simple Euler integration, which can become unstable with

high stiffness or damping, RK4 samples derivatives at four points within each timestep (𝑑𝑡)to

accurately approximate the next state.

State Vector (14 variables + those of the untethered box):

𝑆 = [𝑍, 𝜙, 𝜃, 𝑍̇, 𝜙̇, 𝜃̇, 𝑍𝑤1..4, 𝑍̇𝑤1..4]

Where:

• 𝑍, 𝜙, 𝜃: Chassis heave, roll, pitch

• 𝑍𝑤: Vertical position of each unsprung mass (wheel)

3.3 Suspension Model

The vehicle is modeled as a 7-DOF system (Chassis Heave, Pitch, Roll + 4 Wheel Vertical

DOFs).

Suspension force at each corner:

𝐹𝑠𝑢𝑠𝑝 = 𝑘𝑠 ⋅ (𝐿𝑓𝑟𝑒𝑒 − (𝑍𝑏𝑜𝑑𝑦 − 𝑍𝑤ℎ𝑒𝑒𝑙)) + 𝑐𝑠 ⋅ (𝑍̇𝑤ℎ𝑒𝑒𝑙 − 𝑍̇𝑏𝑜𝑑𝑦)

3.4 Tire Model

Tires use a point-follower model with linear vertical stiffness. Tire force is generated only when

the tire penetrates the ground:

𝐹𝑡𝑖𝑟𝑒 = max⁡(0, 𝑘𝑡 ⋅ (𝐻𝑟𝑜𝑎𝑑 − (𝑍𝑤ℎ𝑒𝑒𝑙 − 𝑅)))

This allows wheels to leave the ground without generating non-physical forces.

3.5 Terrain Generation

The “Rough Dirt Road” uses deterministic spatial noise rather than random noise. Road height is

computed as:

𝑍(𝑥, 𝑦) = 𝐴 ⋅ [0.5sin⁡(𝑓1𝑦)sin⁡(𝑓1𝑥) + 0.3sin⁡(𝑓2𝑦 + 𝛿) + 0.2sin⁡(𝑓3(𝑥 + 𝑦))]

This ensures consistent, repeatable roughness.

4. Technical Implementation

• Language: JavaScript (ES6 Modules)

• Rendering: Three.js (WebGL)

• Charting: Chart.js

• Architecture:
o buildVehicle

o stepRK4 (physics)

o animate (render) These loops decouple simulation frequency from frame rate.

5. References

• Milliken, W. F., & Milliken, D. L. (1995). Race Car Vehicle Dynamics. SAE

International.

• Gillespie, T. D. (1992). Fundamentals of Vehicle Dynamics. SAE International.

• ISO 8855:2011. Road vehicles — Vehicle dynamics and road-holding ability —

Vocabulary.

• Press, W. H., et al. (2007). Numerical Recipes 3rd Edition: The Art of Scientific

Computing. Cambridge University Press.

